Showing posts with label wave. Show all posts
Showing posts with label wave. Show all posts

Wednesday, 10 April 2013

Wave antenna 5 8 pro VKV FM

Wave antenna 5/8 consists of a vertical radiator which is fed at the base of the antenna. A suitable device of some sort should be added between the antenna and feedline if you want to eat with coax. Adding a coil in series with the antenna on the base is one of these methods are suitable. 



So why would anyone use an antenna 5/8 wave if they have to go through all that extra work? After all, a ground plane antenna provides a good match. There are several answers. The first is GAIN. The computer shows that the antenna (mounted 1 foot above the ground) has a margin of about 1.5 dBd higher than a dipole (also installed 1 foot above the ground.)The second reason you might want to use the wave 5/8 vertical is to get a lower angle of radiation. Peak radiation angle A half-wave antenna is 20 degrees. You will find that the angle 5/8 wave antenna radiation is only 16 degrees so it is better dx antenna. 

 You may have noticed a pattern developing here. A quarter-wave ground plane antenna has a radiation pattern that produces the maximum gain at about 25 degrees and half-wave antenna drops to 20-degree angle, and wave antenna 5/8 further drops to 16 degrees angle. So why not just keep extending the antenna to one full wave? Well it would be nice if it worked, but unfortunately the wave patterns begin to create a very high angle of radiation waves exceed 5/8. So weve reached the maximum gain at this point and extend the antenna further reduce profits only where we want it (low angle). 

Of course if you are interested in a very short jump, extend the antenna will produce a nice profit on the dipole.All the length of the antenna depends on various factors. Some of these factors are: height above ground, the diameter of the wire, nearby structures, the effects of other antennas in the area and even the conductivity of the soil.This page allows you to calculate the wavelength for the antenna 5/8. It uses the standard formula, 585 / f (178.308 / f for metric) MHz to calculate the length of the element. If you have experimented with 5/8 wave antenna before and know a better formula for your QTH, feel free to change the formula accordingly. This formula is for the antenna wire. 

Of course if you build your antenna out of the tube, total length of the antenna will be shorter, for example I have found that 21.5 feet seems to provide maximum benefit to the frequency of 28.5 MHz when using a 1 "tube, and 22.5. Foot seems be the best long-wire at the same frequency. Since the formula to calculate the antenna to be about 2 feet shorter, be sure to experiment and maybe add a little for your final term.
Read More..

Tuesday, 26 March 2013

25 Metres Range Short Wave AM Transmitter


Here the short wave AM Transmitter circuit design diagram. The circuit is quite simple and easy to build since it applies only a few electronic components. The primary feature of this transmitter is that it really is absolutely free from the LC (inductor, capacitor) tuned circuit and runs using a fixed frequency of 12 MHz that is very stable. An LC based tuned circuit is inherently unstable because of drift of resonant frequency due to temperature and humidity variations.

25 Metres Range, Short Wave AM Transmitter Circuit diagram :



Resistors R1 and R2 are utilized for DC biasing of transistor T1. The capacitor C1 gives coupling in between the condenser microphone and the base of transistor T1. In the same way, resistors R3, R4 and R5 give DC biasing to transistor T2.

The oscillator segment is a combination of transistor T2, crystal XTAL, capacitor C2, C3 and resistors R3, R4 and R5. The crystal is excited by a portion of energy from the collector of transistor T2 via the feedback capacitor C2. The crystal vibrates at its essential frequency and the oscillations happening because of the crystal are placed to the base of transistor T2 across resistor R4. Using this method, continuous undamped oscillations are acquired. Any crystal having the frequency in short wave range could be substituted in this circuit, even though the operation was tried using a 12 MHz crystal.

The Transistor T1 has 3 capabilities:
  1. The transistor features the DC path for extending +VCC source to transistor T2.
  2. It amplifies the audio signals which is generated by condenser mic.
  3. It injects the audio signal into the high frequency carrier signal for modulation.
The condenser microphone transforms the voice message into the electrical signal that is amplified by transistor T1. This amplified audio signal modulates the carrier frequency produced by transistor T2. The amplitude modulated output is acquired at the collector of transistor T2 and is transmitted by a loop antenna into space in the form of electromagnetic waves. The antenna could be tuned to a specific frequency by fine-tuning the trimmer C5 and also by modifying the length of ferrite rod into the coil.

The transmitted signals could be received on any short wave receiver without having distortion and noise. The range of this transmitter is 25 to 30 metres and may be expanded even more in case the length of the antenna wire is suitably extended together with good matching.
Read More..