Showing posts with label antenna. Show all posts
Showing posts with label antenna. Show all posts

Wednesday, 10 April 2013

Wave antenna 5 8 pro VKV FM

Wave antenna 5/8 consists of a vertical radiator which is fed at the base of the antenna. A suitable device of some sort should be added between the antenna and feedline if you want to eat with coax. Adding a coil in series with the antenna on the base is one of these methods are suitable. 



So why would anyone use an antenna 5/8 wave if they have to go through all that extra work? After all, a ground plane antenna provides a good match. There are several answers. The first is GAIN. The computer shows that the antenna (mounted 1 foot above the ground) has a margin of about 1.5 dBd higher than a dipole (also installed 1 foot above the ground.)The second reason you might want to use the wave 5/8 vertical is to get a lower angle of radiation. Peak radiation angle A half-wave antenna is 20 degrees. You will find that the angle 5/8 wave antenna radiation is only 16 degrees so it is better dx antenna. 

 You may have noticed a pattern developing here. A quarter-wave ground plane antenna has a radiation pattern that produces the maximum gain at about 25 degrees and half-wave antenna drops to 20-degree angle, and wave antenna 5/8 further drops to 16 degrees angle. So why not just keep extending the antenna to one full wave? Well it would be nice if it worked, but unfortunately the wave patterns begin to create a very high angle of radiation waves exceed 5/8. So weve reached the maximum gain at this point and extend the antenna further reduce profits only where we want it (low angle). 

Of course if you are interested in a very short jump, extend the antenna will produce a nice profit on the dipole.All the length of the antenna depends on various factors. Some of these factors are: height above ground, the diameter of the wire, nearby structures, the effects of other antennas in the area and even the conductivity of the soil.This page allows you to calculate the wavelength for the antenna 5/8. It uses the standard formula, 585 / f (178.308 / f for metric) MHz to calculate the length of the element. If you have experimented with 5/8 wave antenna before and know a better formula for your QTH, feel free to change the formula accordingly. This formula is for the antenna wire. 

Of course if you build your antenna out of the tube, total length of the antenna will be shorter, for example I have found that 21.5 feet seems to provide maximum benefit to the frequency of 28.5 MHz when using a 1 "tube, and 22.5. Foot seems be the best long-wire at the same frequency. Since the formula to calculate the antenna to be about 2 feet shorter, be sure to experiment and maybe add a little for your final term.
Read More..

Tuesday, 2 April 2013

Electromagnetic waves and antenna

Radio signals are a form of electromagnetic wave. They are the same type of radiation as light, ultra-violet and infra red rays, differing from them in their wavelength and frequency. Electromagnetic waves have both electric and magnetic components that are inseparable. The planes of these fields are at right angles to one another and to the direction of motion of the wave. The electric field results from the voltage changes occurring in the antenna which is radiating the signal, and the magnetic changes result from the current flow. It is also found that the lines of force in the electric field run along the same axis as the antenna, but spreading out as they move away from it. This electric field is measured in terms of the change of potential over a given distance, e.g. volts per meter, and this is known as the field strength. Similarly when an antenna receives a signal the magnetic changes cause a current flow, and the electric field changes cause the voltage changes on the antenna.

There are a number of properties of a wave. The first is its wavelength. This is the distance between a point on one wave to the identical point on the next. One of the most obvious points to choose is the peak as this can be easily identified although any point is acceptable.

The second property of the electromagnetic wave is its frequency. This is the number of times a particular point on the wave moves up and down in a given time (normally a second). The unit of frequency is the Hertz and it is equal to one cycle per second. This unit is named after the German scientist who discovered radio waves. The frequencies used in radio are usually very high. Accordingly the prefixes kilo, Mega, and Giga are often seen. 1 kHz is 1000 Hz, 1 MHz is a million Hertz, and 1 GHz is a thousand million Hertz i.e. 1000 MHz. Originally the unit of frequency was not given a name and cycles per second (c/s) were used. Some older books may show these units together with their prefixes: kc/s; Mc/s etc. for higher frequencies.

The third major property of the wave is its velocity. Radio waves travel at the same speed as light. For most practical purposes the speed is taken to be 300 000 000 meters per second although a more exact value is 299 792 500 meters per second. Although wavelength was used as a measure for signals, frequencies are used exclusively today. It is very easy to relate the frequency and wavelength as they are linked by the speed of light as shown:

lambda = c / f

Where, lambda = the wavelength in meters

f = frequency in Hertz

c = speed of radio waves (light) taken as 300 000 000 meters per second for all practical purposes.

It is also interesting to note that close to the antenna there is also an inductive field the same as that in a transformer. This is not part of the electromagnetic wave, but it can distort measurements close to the antenna. It can also mean that transmitting antennas are more likely to cause interference when they are close to other antennas or wiring that might have the signal induced into it. For receiving antennas they are more susceptible to interference if they are close to house wiring and the like. Fortunately this inductive field falls away fairly rapidly and it is barely detectable at distances beyond about two or three wavelengths from the antenna.

Read More..